Alterations in intrinsic mitochondrial function with aging are fiber type-specific and do not explain differential atrophy between muscles.
نویسندگان
چکیده
To determine whether mitochondrial dysfunction is causally related to muscle atrophy with aging, we examined respiratory capacity, H(2) O(2) emission, and function of the mitochondrial permeability transition pore (mPTP) in permeabilized myofibers prepared from four rat muscles that span a range of fiber type and degree of age-related atrophy. Muscle atrophy with aging was greatest in fast-twitch gastrocnemius (Gas) muscle (-38%), intermediate in both the fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus (Sol) muscles (-21%), and non-existent in adductor longus (AL) muscle (+47%). In contrast, indices of mitochondrial dysfunction did not correspond to this differential degree of atrophy. Specifically, despite higher protein expression for oxidative phosphorylation (oxphos) system in fast Gas and EDL, state III respiratory capacity per myofiber wet weight was unchanged with aging, whereas the slow Sol showed proportional decreases in oxphos protein, citrate synthase activity, and state III respiration. Free radical leak (H(2) O(2) emission per O(2) flux) under state III respiration was higher with aging in the fast Gas, whereas state II free radical leak was higher in the slow AL. Only the fast muscles had impaired mPTP function with aging, with lower mitochondrial calcium retention capacity in EDL and shorter time to mPTP opening in Gas and EDL. Collectively, our results underscore that the age-related changes in muscle mitochondrial function depend largely upon fiber type and are unrelated to the severity of muscle atrophy, suggesting that intrinsic changes in mitochondrial function are unlikely to be causally involved in aging muscle atrophy.
منابع مشابه
Mitochondrial Involvement and Impact in Aging Skeletal Muscle
Atrophy is a defining feature of aging skeletal muscle that contributes to progressive weakness and an increased risk of mobility impairment, falls, and physical frailty in very advanced age. Amongst the most frequently implicated mechanisms of aging muscle atrophy is mitochondrial dysfunction. Recent studies employing methods that are well-suited to interrogating intrinsic mitochondrial functi...
متن کاملHeart failure affects mitochondrial but not myofibrillar intrinsic properties of skeletal muscle.
BACKGROUND Congestive heart failure (CHF) induces abnormalities in skeletal muscle that are thought to in part explain exercise intolerance. The aim of the present study was to determine whether these changes actually result in contractile or metabolic functional alterations and whether they are muscle type specific. METHODS AND RESULTS With a rat model of CHF (induced by aortic banding), we ...
متن کاملتئوریهای بیوشیمیایی و ژنتیکی فرایند پیری
Aging is the outcome of the progressive accumulation of different alterations in the body which accompanied with gradual decrease of the efficiencies of normal physiological functions and the capacity to maintain homeostasis that lead to the increase in disease probability and the death of people. The researchers have done different experiments especially on animal models for the perception of ...
متن کاملMitochondrial ROS regulate oxidative damage and mitophagy but not age-related muscle fiber atrophy
Age-related loss of skeletal muscle mass and function is a major contributor to morbidity and has a profound effect on the quality of life of older people. The potential role of age-dependent mitochondrial dysfunction and cumulative oxidative stress as the underlying cause of muscle aging remains a controversial topic. Here we show that the pharmacological attenuation of age-related mitochondri...
متن کاملHeart Failure Affects Mitochondrial but Not Myofibrillar Intrinsic Properties of Skeletal Muscle
Background—Congestive heart failure (CHF) induces abnormalities in skeletal muscle that are thought to in part explain exercise intolerance. The aim of the present study was to determine whether these changes actually result in contractile or metabolic functional alterations and whether they are muscle type specific. Methods and Results—With a rat model of CHF (induced by aortic banding), we st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Aging cell
دوره 10 6 شماره
صفحات -
تاریخ انتشار 2011